sábado, 23 de octubre de 2010

Conservación de la Energía Y Aplicaciones de las formas de calor: conducción, convección, radiación

Conservación de la Energía
Esta ley es una de las leyes fundamentales de la física y  su teoría se trata de que la energía no se crea ni se destruye, únicamente se  transforma (ello implica que la masa en ciertas condiciones se puede considerar como una forma de energía .En general, no se tratará aquí el problema de conservación de masa en energía ya que se incluye la teoría de la relatividad).
La ley de conservación de la energía afirma que:
1.-No existe ni puede existir  nada capaz de generar energía.
2.-No existe ni puede existir nada capaz de hacer desaparecer la energía.
3.-Si se observa que la cantidad de energía varía siempre será posible atribuir dicha variación a un intercambio de energía con algún otro cuerpo o con el medio circundante.
BIBLIOGRAFIA
Aplicaciones de las formas de calor: conducción, convección, radiación.

Ley de Fourier
Los mecanismos de transferencia de energía térmica son de tres tipos:
§  Conducción


La transferencia de calor es el paso de energía térmica desde un cuerpo de mayor temperatura a otro de menor temperatura.
La conducción de calor es un mecanismo de transferencia de energía térmica entre dos sistemas basado en el contacto directo de sus partículas sin flujo neto de materia y que tiende a igualar la temperatura dentro de un cuerpo y entre diferentes cuerpos en contacto por medio de ondas.
La conducción del calor es muy reducida en el espacio vacío y es nula en el espacio vacío ideal, espacio sin energía.
El principal parámetro dependiente del material que regula la conducción de calor en los materiales es la conductividad térmica, una propiedad física que mide la capacidad de conducción de calor o capacidad de una substancia de transferir el movimiento cinético de sus moléculas a sus propias moléculas adyacentes o a otras substancias con las que está en contacto. La inversa de la conductividad térmica es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor.
a transferencia de energía o calor entre dos cuerpos diferentes por conducción o convección requiere el contacto directo de las moléculas de diferentes cuerpos, y se diferencian en que en la primera no hay movimiento macroscópico de materia mientras que en la segunda sí lo hay. Para la materia ordinaria la conducción y la convección son los mecanismos principales en la "materia fría", ya que la transferencia de energía térmica por radiación sólo representa una parte minúscula de la energía transferida. La transferencia de energía por radiación aumenta con la cuarta potencia de la temperatura (T4), siendo sólo una parte importante a partir de temperaturas superiores a varios miles de kelvin.

Ley de Fourier.
Es la forma de transmitir el calor en cuerpos sólidos; se calienta un cuerpo, las moléculas que reciben directamente el calor aumentan su vibración y chocan con las que las rodean; estas a su vez hacen lo mismo con sus vecinas hasta que todas las moléculas del cuerpo se agitan, por esta razón, si el extremo de una varilla metálica se calienta con una flama, transcurre cierto tiempo hasta que el calor llega al otro extremo. El calor no se transmite con la misma facilidad por todos los cuerpos. Existen los denominados "buenos conductores del calor", que son aquellos materiales que permiten el paso del calor a través de ellos. Los "malos conductores o aislantes" son los que oponen mucha resistencia al paso de calor.
Se denomina radiación térmica o radiación calorífica a la emitida por un cuerpo debido a su temperatura. Todos los cuerpos con temperatura superior a 0 K emiten radiación electromagnética, siendo su intensidad dependiente de la temperatura y de la longitud de onda considerada. En lo que respecta a la transferencia de calor la radiación relevante es la comprendida en el rango de longitudes de onda de 0,1µm a 100µm, abarcando por tanto parte de la región ultravioleta, la visible y la infrarroja del espectro electromagnético.
La materia en un estado condensado (sólido o líquido) emite un espectro de radiación continuo. La frecuencia de onda emitida por radiación térmica es una densidad de probabilidad que depende solo de la temperatura.
Los cuerpos negros emiten radiación térmica con el mismo espectro correspondiente a su temperatura, independientemente de los detalles de su composición. Para el caso de un cuerpo negro, la función de densidad de probabilidad de la frecuencia de onda emitida está dada por la ley de radiación térmica de Planck, la ley de Wien da la frecuencia de radiación emitida más probable y la ley de Stefan-Boltzmann da el total de energía emitida por unidad de tiempo y superficie emisora (esta energía depende de la cuarta potencia de la temperatura absoluta).
A temperatura ambiente, vemos los cuerpos por la luz que reflejan, dado que por sí mismos no emiten luz. Si no se hace incidir luz sobre ellos, si no se los ilumina, no podemos verlos. A temperaturas más altas, vemos los cuerpos debido a la luz que emiten, pues en este caso son luminosos por sí mismos. Así, es posible determinar la temperatura de un cuerpo de acuerdo a su color, pues un cuerpo que es capaz de emitir luz se encuentra a altas temperaturas.
La relación entre la temperatura de un cuerpo y el espectro de frecuencias de su radiación emitida se utiliza en los pirómetros ópticos.

BIBLIOGRAFIA
www.quimica.unam.mx/IMG/pdf/1513TranferenciadeCalor.pdf 

ACTIVIDADE EN CLASE

¿Qué es el Calor específico y latente?

Equipo
RESPUESTAS
1
Calor específico: es la cantidad de calor necesaria para subir un grado o más de temperatura un objeto con una masa de un gramo.
2

3
Calor latente: el cambio de temperatura de una sustancia conlleva a una serie de cambios físicos. Casi todas las sustancias aumentan de volumen al calentarse y se contraen al enfriarse. Calor específico: cantidad de calor necesaria para elevar la temperatura de una unidad de masa de una sustancia en un grado.
4
Latente: cantidad de energía bajo la forma de calor lanzado o absorbido en un cambio de fases.
Especifico: cantidad de calor necesaria para elevarla temperatura de una sustancia a un grado.
5
Calor latente: cambios físicos dados por la temperatura (aumento de volumen con calor y contracción de volumen en el enfriamiento) calor especifico: es la energía necesaria para elevar 1 grado C. a un gramo de materia o sustancia c=...!
6
Calor latente: El cambio de temperatura
Calor  específico: Calor que es necesario.


Q = m.Cp (Tf-Ti)
Q = energía transferida se mide en calorías.
Cp. = Calor especifico del material  Cal/Grados centígrados. Gramos
M = masa del material en gramos
T = temperatura (inicial i Final f) grados centígrados.
Material: Vaso de precipitados 250 ml, termómetro, sistema de calentamiento, placa de aluminio o cobre,  balanza.

Procedimiento:
-          Pesar la placa de aluminio o cobre.
-          Pesar 100 ml de agua en el vaso de precipitados
-          Calentar  la barra metálica dentro del agua hasta ebullición,  midiendo la temperatura del agua.
-          Colocar la barra de metal en el calorímetro y medir la temperatura de equilibrio del agua inicial

Metal
Masa gramos
Temperatura inicial del agua
Temperatura de equilibrio
-                     Calculo del calor especifico
-                     1°cobre
-                    
-                    
-                    
-                     .14cal/g°C
-                     2
-                    
-                    
-                    
-                    
-                     3
-                    
-                    
-                    
-                    
-                     4°cobre
-                     120.2
-                     18°C
-                     20°C
-                     .22cal/g°C
-                     5°cobre
-                    
-                    
-                    
-                     .10cal/g°C
-                     6°cobre
-                    
-                    
-                    
-                     .19cal/g°C


Conclusiones:
Pudimos observar el calor latente en el momento en que el agua ebullo y desprendió energía en forma de calor. También el calor especifico del agua, 1 cal para elevar un grado centígrado, 1 gramo de agua. Observamos el equilibrio térmico al introducir la barra de metal caliente al agua, la barra cedió calor bajando de temperatura mientras el agua lo absorbió elevando la suya, y de ahí calculamos el calor especifico de ambas.

martes, 19 de octubre de 2010

CALOR ESPECÍFICO Y LATENTE

CALOR ESPECÍFICO  Y LATENTE

Calor especifico: Cantidad de calor necesaria para elevar la temperatura de una unidad de masa de una sustancia en un grado. En el Sistema Internacional de unidades, el calor específico se expresa en julios por kilogramo y kelvin; en ocasiones también se expresa en calorías por gramo y grado centígrado. El calor específico del agua es una caloría por gramo y grado centígrado, es decir, hay que suministrar una caloría a un gramo de agua para elevar su temperatura en un grado centígrado.
Calor latente: En termoquímica, calor latente es la cantidad de energía bajo la forma de calor lanzado o absorbido por una sustancia durante un cambio de fase (es decir. sólido, líquido, o gas), - también llamó una transición de la fase.

Equilibrio térmico, temperatura e intercambio de energía interna

Equilibrio térmico, temperatura e intercambio de energía interna.
EQUILIBRIO TERMICO
Todos los cuerpos tienen una energía llamada energía interna. La cantidad de energía interna de un cuerpo es muy difícil de establecer ya que las partículas que forman un cuerpo tienen energías muy variadas. Tienen energías de tipo eléctrico, de rotación, de traslación y vibración debido a los movimientos que poseen, energías de enlace (que pueden dar posibles reacciones químicas) e incluso energía al desaparecer la materia y transformarse en energía DE=mc2.
Al poner en contacto dos cuerpos a distinta temperatura, el de mayor temperatura cede parte de su energía al de menos temperatura hasta que sus temperaturas se igualan. Se alcanza así lo que llamamos "equilibrio térmico".
La energía calorífica (calor) no pasa del cuerpo que tiene más energía al que tiene menos sino del que tiene mayor temperatura al que la tiene menor.
Dos sistemas que están en contacto mecánico directo o separados mediante una superficie que permite la transferencia de calor lo que se conoce como superficie diatérmica, se dice que están en contacto térmico.
Consideremos entonces dos sistemas en contacto térmico, dispuestos de tal forma que no puedan mezclarse o reaccionar químicamente. Consideremos además que estos sistemas están colocados en el interior de un recinto donde no es posible que intercambien calor con el exterior ni existan acciones desde el exterior capaces de ejercer trabajo sobre ellos. La experiencia indica que al cabo de un tiempo estos sistemas alcanzan un estado de equilibrio termodinámico que se denominará estado de equilibrio térmico recíproco o simplemente de equilibrio térmico.
El concepto de equilibrio térmico puede extenderse para hablar de un sistema o cuerpo en equilibrio térmico. Cuando dos porciones cualesquiera de un sistema se encuentran en equilibrio térmico se dice que el sistema mismo está en equilibrio térmico o que es térmicamente homogéneo.
El concepto de equilibrio térmico es la base de la llamada Ley Cero de la Termodinámica. Esta ley proposición fue enunciada por R. H. Fowler en 1931. La ley cero de la termodinámica se enuncia diciendo:
La experiencia indica que si dos sistemas A y B se encuentran, cada uno por separado, en equilibrio térmico con un tercer sistema, que llamaremos C, entonces A y B se encuentran en equilibrio térmico entre sí.
TEMPERATURA
  
La temperatura es la medida de la cantidad de energía de un objeto. Ya que la temperatura es una medida relativa, las escalas que se basan en puntos de referencia deben ser usadas para medir la temperatura con precisión. Hay tres escalas comúnmente usadas actualmente para medir la temperatura: la escala Fahrenheit (°F), la escala Celsius (°C), y la escala Kelvin (K).
INTERCAMBIO DE ENERGIA INTERNA
Para comprender los fenómenos térmicos es necesario imaginar los cuerpos materiales como almacenes de partículas dotadas de movimiento de diferentes tipos: vibración, rotación y traslación. Cada uno de estos movimientos puede ser transferido a otra partícula que no lo tenga, mediante algún tipo de interacción, como por ejemplo choques o acciones ejercidas a distancia. Se dice en estos casos que las partículas tienen energía, la cual puede ser aumentada o disminuida, aumentando cualquiera de estos tipos de movimientos o todos a la vez.
La Energía Total de un objeto material depende del número de partículas que tenga, de la energía cinética de cada una de ellas y de la energía proveniente de las interacciones entre ellas. Esta energía total es la Energía Interna que tiene el cuerpo. 
Esto quiere decir que un objeto material tiene mucha energía interna por tres razones: o porque tiene muchas partículas o átomos componentes, o porque sus átomos o partículas componentes tienen una energía muy alta., o ambas cosas a la vez, como ocurre en el caso de una estrella.
Desde este punto de vista cuando calentamos un clavo ya sea con una vela o martillándolo, lo que se hace es incrementar la energía de sus partículas componentes, aumentando de esta manera su energía interna.
http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/Calor/EquilibrioTermico/equilibrio_termico.htm