lunes, 8 de noviembre de 2010

SEGUNDA LEYDE LA TERMODINAMICA

La segunda ley de la termodinámica o segundo principio de la termodinámica expresa que:
La cantidad de entropía del Universo tiende a incrementarse con el tiempo.
Es una de las leyes más importantes de la física; aún pudiéndose formular de muchas maneras todas llevan a la explicación del concepto de irreversibilidad.

Contenido

[ocultar]

La definición formal del segundo principio de la Termodinámica establece que:
En un estado de equilibrio, los valores que toman los parámetros característicos de un sistema termodinámico cerrado son tales que maximizan el valor de una cierta magnitud función dichos parámetros, llamada entropía.
La entropía de un sistema es una magnitud física abstracta que la mecánica estadística identifica con el grado de desorden molecular interno de un sistema físico. La termodinámica clásica, en cambio, la define como la relación entre el calor transmitido y la temperatura a la que se transmite. La termodinámica axiomática, en cambio, define a la entropía como una cierta función –a priori, de forma desconocida–, que depende de los llamados "parámetros característicos" del sistema, y que sólo puede definirse para los estados de equilibrio del sistema.

Dichos parámetros característicos se establecen a partir de un postulado derivado del primer principio de la termodinámica, llamado a veces el principio de estado. Según éste, el estado de equilibrio de un sistema queda totalmente definido por medio de la energía interna del sistema, su volumen y su composición molar. Cualquier otro parámetro termodinámico, como podrían serlo la temperatura o la presión, se define como una función de dichos parámetros. Así, la entropía será también una función de dichos parámetros.
El segundo principio de la termodinámica establece que dicha entropía sólo puede definirse para estados de equilibrio termodinámico, y que de entre todos los estados de equilibrio posibles –que vendrán definido por los parámetros característicos–, sólo se puede dar el que, de entre todos ellos, maximiza la entropía.
Las consecuencias de este enunciado son sutiles: al considerar un sistema cerrado tendente al equilibrio, los estados de equilibrio posibles incluyen todos aquellos que sean compatibles con los límites o contornos del sistema. Entre ellos se encuentra, evidentemente, el estado de equilibrio de partida. Si el sistema varía su estado de equilibrio desde el de partida a otro, ello es debido a que la entropía del nuevo estado es mayor que la del estado inicial; si el sistema cambia de estado de equilibrio, su entropía sólo puede aumentar. Por tanto, la entropía de un sistema aislado termodinámicamente sólo puede incrementarse. Como el sistema aislado por antonomasia es el propio universo, el segundo principio de la termodinámica suele resumirse en que:
La cantidad de entropía del Universo tiende a incrementarse con el tiempo.
SIn embargo, la termodinámica axiomática no reconoce al tiempo como una variable termodinámica. Formalmente, la entropía sólo puede definirse para estados en equilibrio. En el proceso que va de un estado de equilibrio a otro no hay estados de equilibrio, por lo que la entropía en dichos estados de no-equilibrio no puede definirse sin incurrir en inconsistencias formales dentro de la propia termodinámica. Así, la entropía no puede ser una función del tiempo, por lo que hablar de variaciones de la misma en el tiempo es formalmente incorrecto.
Cuando se hace, es debido a que se ha presupuesto que en el proceso de un estado de equilibrio a otro se ha pasado por infinitos estados intermedios de equilibrio, procedimiento que permite introducir al tiempo como parámetro. En tanto en cuanto el estado de equilibrio final sea aquél de máxima entropía posible, no se habrá incurrido en una incosistencia frontal por cuanto dichos estados de equilibrio intermedios no han afectado al único real (el final).

En un sentido general, el segundo principio de la termodinámica es la ley de la física que afirma que las diferencias entre un sistema y sus alrededores tienden a igualarse. En un sentido clásico, esto se interpreta como la ley de la física de la que se deriva que las diferencias de presión, densidad y, particularmente, las diferencias de temperatura tienden a igualarse. Esto significa que un sistema aislado llegará a alcanzar una temperatura uniforme. Una máquina térmica es aquella que provee de trabajo eficaz gracias a la diferencia de temperaturas entre dos cuerpos. Dado que cualquier máquina termodinámica requiere una diferencia de temperatura, se deriva pues que ningún trabajo útil puede extraerse de un sistema aislado en equilibrio térmico, esto es, se requerirá de la alimentación de energía del exterior.

El segundo principio se usa a menudo como la razón por la cual no se puede crear una máquina de movimiento perpetuo. En efecto, el segundo principio lleva implícito el establecer la posibilidad de que un determinado fenómeno o proceso, por lo demás consistente con alguna otra ley de la física, pueda en realidad ocurrir. Por ejemplo, podría razonarse que, en virtud del primer principio de la termodinámica, nada impide que, espontáneamente, sea posible extraer calor de un cuerpo frío, por ejemplo a 200K, para transmitírselo a otro caliente, por ejemplo a 1000K: basta con que se cumpla el balance energético correspondiente, a consecuencia del cual el cuerpo frío se enfriaría aún más, y el caliente se calentaría más aún. Sin embargo, el segundo principio establece que tal fenómeno es imposible. Esto no sólo se extiende a fenómenos o procesos físicos o ingenieriles que impliquen algún proceso térmico, sino que el segundo principio se encuentra íntimamente enraizado en todas las ramas de la física: de todas las leyes de la naturaleza, el segundo principio es probablemente uno de los más comprobado, y desde luego el más firmemente reconocido, de manera que se considera como algo indispensable que toda nueva teoría física o todo nuevo fenómeno teorizado, por muchas otras teorías previas a las que contradiga, lo cumpla estrictamente.


1 comentario: